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ABSTRACT
Sequences are easily generated when the first 2 or more numbers

in the sequence are known and a pattern, formula, is identified as

the generating function. However it gets complicated when only

the first 2 numbers of a sequence are known. For example, con-

sider a scenario where a sequence of values is presented and one

needs to find intermediate values between any two consecutive

values in the sequence. The original sequence is known to follow

the Geometric Mean progression, thus the intermediate value

are assumed to follow the Geometric Mean progression as well.

By taking a finite number of intermediate values between the

selected numbers, once can use simultaneous equations to find

the required intermediate values. However solving simultane-

ous equations is not linearly computational. This paper provides

3 different formulæ that optimise the computation to a linear

algorithm.
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1 INTRODUCTION
A Geometric Mean sequence can be generated by using Equation

1 as the generating function. For example, the geometric mean

sequence for a list of numbers starting with 9 and 16 will look

like

5, 100, 22.36068, 47.28708, 32.51725, 39.21282, 35.70845

Geometric Mean =
√
ab (1)

Consider the scenario where the above sequence are points

on an oscillating behaviour. More information is required to be

provided around the first 2 observation points, 5 and 100. Assum-

ing that the behaviour follows the Geometric Mean, determine

the 10 values between the 5 and 100 points. One can proceed

with generating the below sequence and solve the values using

simultaneous equations. With 10 unknowns it is already a tedious

exercise prone to errors. Now scale up the computations to 100

and the complexity will exponentially grow.

5,a,b, c,d, e, f ,д,h, i, j, 100

This paper presents a set of computationally optimised forumulæ

to solve the value for a finite set of intermediate values.

2 FINDING THE VALUE FOR v1
In order to determine a formula for calculating the first unknown

in the sequence, a number of simultaneous equations need to be

calculated to determine if a pattern exists. Exhibit 1

|var | = 1, var1 =
b2

a

|var | = 2, var1 =
3

√
b4

a

|var | = 3, var1 =
5

√
b8

a3

|var | = 4, var1 =
11

√
b16

a5

|var | = 5, var1 =
21

√
b32

a11

Exhibit 1: Values for v1 for varying sequence lengths

Analysing the data, it is observable that the value can be gen-

eralised to Equation 2

v1 =
J|var |+1

√
b2

|var |

a J|var |
(2)

Interestingly the square root factor increases following the

Jacobsthal sequence, [1]. Similarly the value of a, the first known
number in the sequence, also increases following the Jacobsthal

sequence. But lays one value behind the square root factor.

3 FINDING THE nth VALUE GIVEN THE
FIRST 2 NUMBERS IN SEQUENCE

Given that the first unknown value is found, the remaining vari-

ables in the sequence can be determined. Exhibit 2 shows that a

formula can be generated to solve the variables directly.

|var | = 2, var2 =
√
a · var1

|var | = 3, var2 =
√
a · var1 var3 =

4

√
a · var3

1

|var | = 4, var2 =
√
a · var1 var3 =

4

√
a · var3

1

var4 =
8

√
a3 · var5

1

|var | = 5, var2 =
√
a · var1 var3 =

4

√
a · var3

1

var4 =
8

√
a3 · var5

1
var5 =

16

√
a5 · var11

1

Exhibit 2: Values for vn for varying sequence lengths

Based on the data in Exhibit 2, formula 3 can be observed.

varn =
2
n−1
√
a Jn−1v Jn

1
(3)
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4 FINDING THE OTHER VARIABLES IN
TERMS OF a AND b

Having to find the first unknown variable value to solve a specific

unknown is not always ideal. Equation 2 provides a means to

replacevar1 in terms of the 2 known values in the sequence. Thus

Exhibit 3 can be generated from Exhibit 2.

|var | = 2, var2 =
3

√
ab2

|var | = 3, var2 =
5

√
ab4 var3 =

5

√
b6

a

|var | = 4, var2 =
11

√
a3b8 var3 =

11

√
b12

a

var4 =
11

√
ab10

|var | = 5, var2 =
21

√
a5b16 var3 =

21

√
b24

a3

var4 =
21

√
ab20 var5 =

21

√
b22

a

Exhibit 3: Repertoire for unknown variables in sequence
based on known values

Generalising the values in Exhibit 3, formula 4 can be obtained.

vn =
J|var |+1

√
bκ( |var |,n)a−1

n J(|vars |−n+1)
(4)

5 DEFINING THE FUNCTION κ (λ,n)

In Equation 4 a new function κ is introduced to simplify the

writing of equation. The function κ is defined as

κ (λ,n)
def

= 2
λ

(
Jn

2
n−1

)
(5)

The Jacobsthal function can be written in O(1), using Binet

formula [2, 3]. Thus the κ function can be computed in O(1).

κ (λ,n)
def

= 2
λ

(
2
n − (−1)n

3 · 2n−1

)
(6)

5.1 Properties of κ (λ,n) function
A number of properties have been observed on the κ function.

5.1.1 Values for κ (λ,n) for 1 ≤ n ≤ λ.
Generating the values for κ (λ,n) where λ ∈ [1, 8] an interesting

pattern is observed

λ n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8

01 : 2.0

02 : 4.0 2.0

03 : 8.0 4.0 6.0

04 : 16.0 8.0 12.0 10.0

05 : 32.0 16.0 24.0 20.0 22.0

06 : 64.0 32.0 48.0 40.0 44.0 42.0

07 : 128.0 64.0 96.0 80.0 88.0 84.0 86.0

08 : 256.0 128.0 192.0 160.0 176.0 168.0 172.0 170.0

Theorem 5.1. When n = 1 the result is always 2λ

Proof.

• Given definition

κ (λ,n)
def

= 2
λ

(
2
n − (−1)n

3 · 2n−1

)
• n = 1

κ (λ, 1) = 2
λ

(
2
1 − (−1)1

3 · 21−1

)
• Computing for values

κ (λ, 1) = 2
λ

(
2 + 1

3 · 0

)
• Simplifications

κ (λ, 1) = 2
λ

□

Theorem 5.2. When n = λ the result is always 2Jλ

Proof.

• Given definition

κ (λ,n)
def

= 2
λ

(
2
n − (−1)n

3 · 2n−1

)
• n = λ

κ (λ, λ) = 2
λ

(
2
λ − (−1)λ

3 · 2λ−1

)
• 2

λ

2
λ−1 = 2

κ (λ, λ) = 2

(
2
λ − (−1)λ

3

)
• Substituting back to Jacobsthal formula

κ (λ, λ) = 2Jλ

□

Conjecture 1. The sequence can be generated by alternating
the addition and subtraction of 2λ−(n−1) from the previous value
For example: Let λ = 7

n = 1, κ (7, 1) =27 =128

n = 2, κ (7, 2) =κ (7, 1) − 2
7−1=64

n = 3, κ (7, 3) =κ (7, 2) + 27−2=96

n = 4, κ (7, 4) =κ (7, 3) − 2
7−3=80

n = 5, κ (7, 5) =κ (7, 4) + 27−4=88

n = 6, κ (7, 6) =κ (7, 5) − 2
7−5=84

n = 7, κ (7, 7) =κ (7, 6) + 27−6=86

Conjecture 2. Given the sequence for any λ it is possible to
compute the values of λ + 1 directly
The tree above provides up to λ = 8 without using any formul,a the
values of λ = 9 can be constructed
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n = 1, Theorem 5.1 =512

n = 2, κ(8, 0) + κ(8, 1) =256

n = 3, κ(8, 1) + κ(8, 2) =384

n = 4, κ(8, 2) + κ(8, 3) =320

n = 5, κ(8, 3) + κ(8, 4) =352

n = 6, κ(8, 4) + κ(8, 5) =336

n = 7, κ(8, 5) + κ(8, 6) =344

n = 8, κ(8, 6) + κ(8, 7) =340

n = 9, κ(8, 7) + κ(8, 8) =342

5.1.2 κ(λ, 0) is always equal to 0. The value of the functionκ(λ, 0)
is always 0 since the Jacobsthal Sequence for n = 0 = J0 = 0.

Theorem 5.3. When n = 0 the result is always 0

Proof.

• Given definition

κ (λ,n)
def

= 2
λ

(
Jn

2
n−1

)
• n = 0, J0 = 0

κ (λ, 0) = 2
λ

(
0

3 · 20−1

)
• Anything multiplied by 0 is 0

κ (λ, 0) = 0

□

5.1.3 Limits of function in infinite sequence.

Proposition 5.4. The series κ (λ,n)
def
= 2

λ
(

Jn
2
n−1

)
converges to

2
λ+1

3

Proof.

• Given definition

κ (λ,n)
def

= 2
λ

(
Jn

2
n−1

)
• Finding the limit of sequence when n approaches∞

lim

n→∞
κ (λ,n) = lim

n→∞
2
λ

(
2
n − (−1)n

3 · 2n−1

)
• Applying the product of limits

lim

n→∞
κ (λ,n) = 2

λ
lim

n→∞

(
2
n − (−1)n

3 · 2n−1

)
• Extracting 2

n
as common for numerator

lim

n→∞
κ (λ,n) = 2

λ
lim

n→∞

(
2
n (1 −

(−1)n

2
n )

3 · 2n−1

)
• Simplifying for limn→∞

(−1)n

2
n = 0

lim

n→∞
κ (λ,n) = 2

λ
lim

n→∞

(
2
n

3 · 2n−1

)
• Simplification

lim

n→∞
κ (λ,n) =

2
λ+1

3

□

Figure 1: Convergence of κ(2,n)

Proposition 5.5. The series κ (λ,n)
def
= 2

λ
(

Jn
2
n−1

)
diverges to

negative infinity (−∞) as n → −∞

For example: Let λ = 2

n = −1, κ (2,−1) =κ (2, 0) + 22+ |−1 | = 8

n = −2, κ (2,−2) =κ (2,−1) − 2
2+ |−2 | = −8

n = −3, κ (2,−3) =κ (2,−2) + 22+ |−3 | = 24

n = −4, κ (2,−4) =κ (2,−3) − 2
2+ |−4 | = −40

n = −5, κ (2,−3) =κ (2,−4) + 22+ |−5 | = 88

n = −6, κ (2,−4) =κ (2,−5) − 2
2+ |−6 | = −168

Proof.

• Given definition

κ (λ,n)
def

= 2
λ

(
Jn

2
n−1

)
• Finding the limit of sequence when n approaches∞

lim

n→−∞
κ (λ,n) = lim

n→−∞
2
λ

(
2
n − (−1)n

3 · 2n−1

)
• Applying the product of limits

lim

n→−∞
κ (λ,n) = 2

λ
lim

n→−∞

(
2
n − (−1)n

3 · 2n−1

)
• Extracting 2

n
as common for numerator

lim

n→−∞
κ (λ,n) = 2

λ
lim

n→−∞

(
2
n (1 −

(−1)n

2
n )

3 · 2n−1

)
• Simplification of powers

lim

n→−∞
κ (λ,n) = 2

λ
lim

n→−∞

(
1 −∞

2
∞

×
2
∞−1

3

)
• Simplification

lim

n→−∞
κ (λ,n) = −∞

□
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Figure 2: Divergence of κ(2,n) for n < 0

6 VALIDATION OF GEOMETRIC MEAN
SOLUTIONS

Theorem 6.1. Equation 4 is reducible to Equation 1 for n = 1

Proof.

• Given definition

vn =
J|var |+1

√
bκ( |var |,n)a−1

n J(|vars |−n+1)

• Let n = 1

v1 =
J|var |+1

√
bκ( |var |,1)a−1

1 J(|vars |−n+1)

• Theorem 5.1 and simplifications

v1 =
J|var |+1

√
b2

|var |

a J|vars |

□

Conjecture 6.2. Equation 4 is reducible to Equation 3 for n > 1
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